본문 바로가기

dp8

[🥈2]백준알고리즘 11053번 : 가장 긴 증가하는 부분수열 문제바로가기 1. 문제: 수열 A가 주어졌을 때, 가장 긴 증가하는 부분 수열을 구하는 프로그램을 작성하시오. 예를 들어, 수열 A = {10, 20, 10, 30, 20, 50} 인 경우에 가장 긴 증가하는 부분 수열은 A = {10, 20, 10, 30, 20, 50} 이고, 길이는 4이다. 2. 입력 첫째 줄에 수열 A의 크기 N (1 ≤ N ≤ 1,000)이 주어진다. 둘째 줄에는 수열 A를 이루고 있는 Ai가 주어진다. (1 ≤ Ai ≤ 1,000) 3. 출력: 첫째 줄에 수열 A의 가장 긴 증가하는 부분 수열의 길이를 출력한다. 4. 풀이: n = int(input()) lst = list(map(int,input().split())) dp = [1 for _ in range(n)] for i.. 2023. 11. 17.
[🥈1]백준알고리즘 1149번 : RGB 문제바로가기 1. 문제: RGB거리에는 집이 N개 있다. 거리는 선분으로 나타낼 수 있고, 1번 집부터 N번 집이 순서대로 있다. 집은 빨강, 초록, 파랑 중 하나의 색으로 칠해야 한다. 각각의 집을 빨강, 초록, 파랑으로 칠하는 비용이 주어졌을 때, 아래 규칙을 만족하면서 모든 집을 칠하는 비용의 최솟값을 구해보자. 1번 집의 색은 2번 집의 색과 같지 않아야 한다. N번 집의 색은 N-1번 집의 색과 같지 않아야 한다. i(2 ≤ i ≤ N-1)번 집의 색은 i-1번, i+1번 집의 색과 같지 않아야 한다. 2. 입력 첫째 줄에 집의 수 N(2 ≤ N ≤ 1,000)이 주어진다. 둘째 줄부터 N개의 줄에는 각 집을 빨강, 초록, 파랑으로 칠하는 비용이 1번 집부터 한 줄에 하나씩 주어진다. 집을 칠하.. 2023. 11. 16.
[🥉1]백준 알고리즘 2775번: 부녀회장이 될테댜 문제바로가기 1. 문제: 평소 반상회에 참석하는 것을 좋아하는 주희는 이번 기회에 부녀회장이 되고 싶어 각 층의 사람들을 불러 모아 반상회를 주최하려고 한다. 이 아파트에 거주를 하려면 조건이 있는데, “a층의 b호에 살려면 자신의 아래(a-1)층의 1호부터 b호까지 사람들의 수의 합만큼 사람들을 데려와 살아야 한다” 는 계약 조항을 꼭 지키고 들어와야 한다. 아파트에 비어있는 집은 없고 모든 거주민들이 이 계약 조건을 지키고 왔다고 가정했을 때, 주어지는 양의 정수 k와 n에 대해 k층에 n호에는 몇 명이 살고 있는지 출력하라. 단, 아파트에는 0층부터 있고 각층에는 1호부터 있으며, 0층의 i호에는 i명이 산다. 2. 입력 첫 번째 줄에 Test case의 수 T가 주어진다. 그리고 각각의 케이스마다.. 2023. 11. 15.
[🥈3]백준알고리즘 9095번: 1, 2, 3 더하기 문제바로가기 1. 문제: 정수 4를 1, 2, 3의 합으로 나타내는 방법은 총 7가지가 있다. 합을 나타낼 때는 수를 1개 이상 사용해야 한다. 1+1+1+1 1+1+2 1+2+1 2+1+1 2+2 1+3 3+1 정수 n이 주어졌을 때, n을 1, 2, 3의 합으로 나타내는 방법의 수를 구하는 프로그램을 작성하시오. 2. 입력 첫째 줄에 테스트 케이스의 개수 T가 주어진다. 각 테스트 케이스는 한 줄로 이루어져 있고, 정수 n이 주어진다. n은 양수이며 11보다 작다. 3. 출력: 각 테스트 케이스마다, n을 1, 2, 3의 합으로 나타내는 방법의 수를 출력한다. 4. 풀이: dp[1] = 1 dp[2] = 1+1/ 2 dp[3] = 1+1+1/ 1+1+1,2+1/ 3 이전 3개의 수열 갯수를 더해준다... 2023. 11. 14.